人工智能会变得比4岁的孩子更聪明吗?看看孩子们是如何学习的
有研究表明,人工智能听上去很厉害,但目前最先进的人工智能还远远不能解决人类4岁儿童能够轻松解决的问题,那么,人工智能会变得比4岁的孩子更聪明吗?看看孩子们如何处理信息如何学习的,大家或许能获得启发。
每个人都听说过人工智能的新进展,尤其是机器学习,尽管人工智能的名称令人印象深刻,但该技术在很大程度上是由检测大数据集中的统计模式的技术构成的,人类的学习方法可远不止于此。
人类是如何学习的
我们是怎么对我们周围的世界了解得这么多的呢?即使还是儿童的时候,我们也能学到很多的东西,比如四岁的孩子已经知道植物、动物和机器;欲望、信念和情感;甚至恐龙和宇宙飞船。
科学已经把我们对世界的认识扩展到不可想象的地步,扩展到宇宙的边缘和时间的开始,我们用这些知识进行新的分类和预测,想象各种新的可能性,并在这个世界促成新的事情的发生,但触及这个世界的只是一股触及我们视网膜的光子流以及干扰耳膜的空气,当我们拥有的例证如此有限的时候,我们是如何用眼睛后面的几磅灰色黏液来完成这一切的呢?
(来源于史密森学会杂志)
到目前为止,最好的答案是,我们的大脑基于触达我们各种感官的具体特定而又混乱的数据进行运算,然后那些运算产生了对世界的准确描述,表现形式似乎是结构化的、抽象的和层次化的,它们包括对三维物体的感知,构成语言基础的语法,以及“心智理论”等心智能力。
“心智理论”能让我们理解他人的想法,这些表现形式使得我们能够做出各种各样的新预测,并以人类特有的创造性方式想象出许多新的可能性。
这种学习不是唯一的一种智力形式,但对人类来说尤其重要,这种智力是小孩子的专长,尽管孩子们在计划和决策方面非常糟糕,但他们是世界上最好的学习者,事实上,很多将数据转化为理论的过程发生在我们五岁之前。
人类两种基本的学习方法
自亚里士多德和柏拉图以来,有两种基本的方法来解决我们如何知道我们所知道的东西的问题,它们仍然是机器学习的主要方法。
亚里士多德自下而上来解决这个问题:从感觉开始——光子流和空气振动(或数字图像或录音的像素或声音样本),这样看你能否从中发现学习模式,这种方法被像哲学家大卫·休谟(David Hume)和密尔(J. S. Mill)这样的古典联想主义者以及后来的像巴甫洛夫(Pavlov)和斯金纳(B. F. Skinner)这样的行为心理学家进一步发扬。从这个观点来看,表现形式的抽象性和层次性结构是一种错觉,或者至少是一种附带现象,所有的工作都可以通过关联和模式检测来完成,特别是如果有足够数据的话。
这种自下而上的学习方法和柏拉图的自上而下的学习方法一直共存,谁也无法一直压过对方。
也许我们从具体的数据中获得抽象的知识,是因为我们已经知道了很多的东西,特别是由于进化,我们已经有了一系列基本的抽象概念。像科学家一样,我们可以用这些概念来构建关于世界的假设,然后,如果那些假设是正确的,我们就可以预测数据应该是什么样的,而不是试图从原始数据中发现模式,与柏拉图一样,笛卡尔(Descartes)、诺姆乔姆斯基(Noam Chomsky)等“理性主义”哲学家和心理学家也采取了这种方法。
有一个日常例子可说明上述两种方法之间的差异,它就是解决垃圾邮件泛滥的问题,那些邮件数据由收件箱中长长的未分类的消息列表组成,现实情况是,其中一部分邮件是非垃圾邮件,一部分是垃圾邮件。如何使用数据来区分它们呢?
先来考虑自下而上的方法,你会注意到,垃圾邮件往往有一些特征:长长的收件人列表,发送自尼日利亚,内文提及百万美元奖金或者壮阳药,问题是,完全有用的非垃圾邮件也可能具有这些特征,如果你看了足够多的垃圾邮件和非垃圾邮件的例子,你可能会发现垃圾邮件不仅往往具有这些特征,这些特征还往往以特定的方式出现在一起(尼日利亚来源以及提及100万美元奖金意味着有问题)。
事实上,可能有某种微妙的更高级的相关性可用来将垃圾邮件与有用的非垃圾邮件区分开来——例如,拼写错误和IP地址比较特殊,如果检测到那些特殊的模式,就可以过滤掉垃圾邮件。自下而上的机器学习技术正是这样做的,学习者会得到数百万个例子,每个例子都有某些特征,每个例子都被标记为垃圾邮件(或者其他的类别),计算机可以提取出区分二者的特征的模式,即便那些特征非常微妙。
那么自上而下的方法呢?举例来说,你收到了一封来自《临床生物学杂志》编辑的邮件,它谈到你写的其中一篇论文,说他们想要发表你的一篇文章,邮件来源不是尼日利亚,内文也没有提及伟哥和百万美元奖金,该邮件没有垃圾邮件的任何特征,但通过使用已有的知识,并以一种抽象的方式思考产生垃圾邮件的过程,你可以断定这封邮件是可疑的:
1.你知道垃圾邮件发送者试图利用人类的贪婪从人们身上榨取钱财。
2.你还知道,正规的“开放获取”期刊已经开始通过向作者而非订阅者收费来覆盖它们的成本,你也不从事临床生物学之类的工作。
综合所有的这些因素来看,我就可以提出一个关于邮件来源的新假设,它的目的是诱使学者付钱在假期刊上“发表”一篇文章,这封邮件和其他的垃圾邮件一样,都源自于可疑的形成过程,尽管它看上去一点也不像垃圾邮件,你可以从一个例子中得出这个结论,你可以跳出邮件本身,通过谷歌搜索发来邮件的编辑的信息来进一步验证你的假设。
用计算机术语来说,你是从一个“生成式模型”着手,它包括贪婪和欺骗等抽象概念,且描述了垃圾邮件的产生过程,这让你能够辨别典型的来自尼日利亚的垃圾邮件,但同时也让你想象到许多不同种类的潜在的垃圾邮件,当你收到来自《华尔街日报》的邮件时,你可以逆向推断:“这看起来就像那种从垃圾邮件生成过程中生成的邮件。”
人工智能新的令人兴奋之处在于,人工智能研究人员最近开发出了这两种强大而有效的学习方法,但评论认为,这些方法本身并没有什么新的深刻的东西。
自下而上的深度学习
在20世纪80年代,计算机科学家发明了一种巧妙的方法来让计算机检测数据中的模式:链结式(或称神经网络)架构。这种方法在上世纪90年代陷入低潮,但最近随着谷歌旗下DeepMind等强大的“深度学习”方法的崛起,它又重新焕发了生机。
例如,你可以为一个深度学习程序提供一组标记为“cat”(猫)、“house”(房子)等等的网络图像。该程序能够检测区分这两组图像的模式,并使用这些信息正确地标记新的图像。
被称为非监督式学习的机器学习技术能够从没有标记的数据中检测出模式;它们就是去寻找一组特征——科学家称之为因素分析。在深度学习机器中,这些过程在不同的层级上重复,有些程序甚至可以从像素或声音的原始数据中发现相关的特征,例如计算机可能首先检测原始图像中对应于边和线的的模式,然后在这些模式中找到对应于脸的模式,诸如此类。
另一种历史悠久的自下而上的技术是强化学习。在20世纪50年代,斯金纳(B. F. Skinner)在约翰·沃森(John Watson)的研究基础上,通过给鸽子安排特定的奖惩活动,控制鸽子去执行复杂的动作——甚至指示空射导弹射向目标。其基本理念是,鸽子得到奖励的行为会重复,而受到惩罚的行为不会重复,直到想要鸽子去做的行为做成了。即便是在斯金纳的时代,这个简单的过程,一遍又一遍地重复,也可能会导致复杂的行为,计算机被设定成一次又一次地执行简单的操作,操作规模之大超出了人类的想象,计算系统可以通过这种方式学习非常复杂的技能。
强化学习(来源于网络)
例如,谷歌的DeepMind研究人员将深度学习和强化学习结合起来,教计算机玩雅达利(Atari)的电子游戏,计算机根本不知道这些游戏是怎么玩的,一开始,它的行为是随机的,它也仅仅得到屏幕在每个时刻的样子以及它的得分情况方面的信息,深度学习帮助它解释屏幕上的特征,强化学习则激励系统获得更高的分数,这台计算机很擅长玩其中的几个游戏,但它也完全玩不好其他的对人类而言易如反掌的游戏。
通过以类似的方式结合使用深度学习和强化学习,DeepMind的AlphaZero程序取得了成功,先后在国际象棋和围棋比赛中击败人类棋手,尽管它只具备基本的游戏规则知识和一些谋划能力。AlphaZero还有一个有趣的特点:它可以与自己进行数亿次的对弈,在此过程中,它会清除导致落败的错误,同时重复和阐明带来胜利的策略,这种系统,以及其他涉及到生成对抗网络技术的系统,会在生成数据的同时也在观察数据。
当你有计算能力将这些技术应用于非常庞大的数据集、数以百万计的电子邮件或Instagram图片或者语音记录时,你就得以解决以前看起来非常困难的问题,这就是计算机科学中令人兴奋的地方。
但是值得记住的是,这些问题——比如识别图片里的猫或者像“Siri”这样的口头词——对于一个蹒跚学步的人类来说是轻而易举的,计算机科学最有趣的发现之一是,对我们来说十分容易的问题(如识别猫)对计算机来说却很难——比下国际象棋或围棋困难得多。计算机需要数以百万计的例子来对对象进行分类,而我们只需用几个例子就可以对这些对象进行分类。
自上而下的贝叶斯模型
自上而下的方法在早期的人工智能发展中扮演了重要角色,在2000年,它也经历了一次复兴,以概率模型或贝叶斯生成模型的形式出现。
使用这种方法的早期尝试面临两种问题。首先,大多数的例证模式一般可以用许多不同的假设来解释:你来自期刊编辑的电子邮件可能是非垃圾邮件,只是看起来不太可能。其次,生成式模型所使用的概念从何而来?柏拉图和乔姆斯基说,你生来就有这些东西,但是我们如何解释我们是如何学习最新的科学概念的呢?小孩子又是如何理解恐龙和宇宙飞船的呢?
贝叶斯模型将生成式模型和假设检验与概率论相结合,旨在解决这两个问题。贝叶斯模型让你计算出在给定的数据下,某一特定假设成立的可能性,通过对我们已经拥有的模型进行小的系统性调整,并根据数据对其进行检验,我们有时可以从旧的概念和模型中创建新的概念和模型,但是这些优势被其他的问题所抵消,贝叶斯技术可以帮助你选择两个假设中哪个更有可能,但几乎总是有大量的潜在假设,没有一个系统可以有效地全盘考虑它们。
贝叶斯模型(来源于网络)
纽约大学的布伦登·莱克(Brenden Lake)和他的同事们用这种自上而下的方法解决了另一个对人类而言很简单,但对计算机非常困难的问题:识别不熟悉的手写字符。看看日本画卷上的一个字,即使你以前从未见过它,你也可以分辨出它是否与其他日本画卷上的字符相似或不同,你可能能够画出它来,甚至可以根据你看到的这个字符设计出一个虚假的日本字符。
用于识别手写字符的自上而下方法是,给计算机就每个字符提供数千个例子,并让计算机提取出显著的特征,而莱克团队则是给这个程序提供一个字符书写过程的通用模型:笔画要么向右,要么向左,完成一个笔画以后,开始写另一个,等等,当程序看到一个特定的字符时,它可以推断出最可能导致这个字符生成的笔画顺序——就像你基于垃圾邮件形成过程推断出你的邮件可能是垃圾邮件一样,然后它就可以判断一个新字符是来自于这个笔画顺序还是来自于另一个不同的笔画顺序,它自己也可以产生一组类似的笔画。
这个程序比应用于完全相同的数据的深度学习程序要有效得多,而且它切实反映了人类的行动过程。
这两种机器学习方法各有优缺点,在自下而上的方法中,程序一开始并不需要太多的知识,但是它需要大量的数据,并且只能以限定的方式进行归纳,在自上而下的方法中,程序可以从几个示例中学习,并做出更广泛、更多样的归纳,但是你需要在开始时为其灌输更多的东西,许多研究人员目前正试图将这两种方法结合起来,利用深度学习来实现贝叶斯推理。
人工智能最近的成功在一定程度上是源于那些旧思想的延伸,但更重要的是,多亏了互联网,我们有了更多的数据,多亏了摩尔定律,我们有了更多的计算能力来应用那些数据。
此外,一个未被重视的事实是,我们所拥有的数据已经被人类整理和处理过了,发布到网上的猫图是典型的猫的图片——人类已经选择的“好”图片,谷歌翻译之所以好用,是因为它利用了数以百万计的人工翻译,将其归纳应用到新的文本上,而不是真正理解句子本身。
儿童的学习方法与机器有何不同?
然而,关于儿童,真正值得注意的是,他们在某种程度上结合了每一种机器学习方法的最佳特征,并对它们完成巨大的超越。
在过去的15年里,发展主义者一直在探究孩子们从数据中学习结构的方式,四岁的孩子只需要像自上而下的系统那样从一两个数据例子中归纳出非常不同的概念,就可以学习,但是他们也可以从数据本身学习新的概念和模型,就像自下而上的系统一样。
例如,在实验室里,研究人员给孩子们一个“布利克特探测器”——一种他们从未见过的新机器,它是一个盒子,当你把特定的物体放在上面时,它就会发光并播放音乐,研究人员只给孩子们举了一两个例子来说明这个机器是如何运转的,告诉他们,放两个红色的方块在上面就可以让它运转,放一个绿色方块和一个黄色方块则不行。
即使是18个月大的婴儿也能立刻明白使得它运转的基本原理:两个方块必须是相同的。他们将这一原理推广到新的例子中:例如,他们会选择两个形状相同的物体来使得机器运转。在其他的实验中,研究人员已经证明,孩子们甚至可以弄明白,是某种隐藏的无形属性让机器得以运转,或者是机器是基于某种抽象的逻辑原理运转的。
你也可以在孩子们的日常学习中看出这一点。即使数据相对较少,幼儿也能像成人科学家那样迅速地学习抽象而直观的生物学、物理学和心理学理论。
近年来,无论是自下而上还是自上而下方法,人工智能系统在机器学习方面所取得的显著成就,都发生在一个由假设和概念构成的有限而明确的空间中——一组精确的游戏片段和动作,一组预先确定的图像。相比之下,儿童和科学家则有时会以激进的方式改变他们的概念,进行范式转变,而不是简单地调整他们已有的概念。
(来源于网络)
四岁的孩子能快速识别出猫和理解单词的意思,但他们也能做出创造性的、令人惊讶的新推断,这些推断也远远超出他们的经验范畴。例如,笔者自己的孙子最近解释说,如果一个成年人想再次成为一个孩子,他应该尝试不吃任何健康的蔬菜,因为健康的蔬菜可以让一个孩子成长为一个成年人,这种看似合理的假设是任何成年人都不会接受的,小孩子才会做出这样的假设。事实上,笔者和同事已经系统地证明,学龄前儿童比大一点的儿童和成年人更善于提出不太可能的假设,我们几乎不知道他们怎么会有这种创造性的学习和创新。
不过,看看孩子们都做些什么,可能会给程序员带来一些有用的关于计算机学习方向的提示,儿童学习的两个特点尤其引人注目,儿童是积极的学习者,它们不像人工智能那样被动地吸收数据。就像科学家做实验一样,孩子们的内在动机是,通过他们无休止的玩耍和探索,从他们周围的世界中获取信息。
最近的研究表明,这种探索比表面上看起来更有系统性,并且能够很好地找到有说服力的证据来支持假设的形成和理论选择,所以,如果将“好奇心”植入机器,并让它们与世界积极互动,可能是让它们的学习变得更真实、更广泛的一条路径。
其次,不同于现有的人工智能,儿童是社会和文化的学习者,人类不是在封闭的状态下学习,而是利用过去几代人所积累下来的智慧,最近的研究表明,甚至学龄前儿童也是通过模仿和聆听他人来学习的,但是他们并不只是被动地服从他们的老师,相反,他们以一种非常微妙和敏感的方式从他人那里获取信息,对信息的来源和可信度做出复杂的推断,并系统地将自己的经历与所听到的内容整合起来。
“人工智能”和“机器学习”听起来很可怕,在某些方面确实如此,例如,这些系统被用来控制武器,我们真的应该对此感到害怕。
然而,人的愚蠢比人工智能造成的破坏要大得多,我们需要变得比过去聪明得多,才能恰当地驾驭这些新技术,但对于人工智能取代人类,还有无论是世界末日预言还是乌托邦式愿景,都没有多少依据。
在我们解决学习的基本悖论之前,再好的人工智能也不如普通的四岁儿童。
(选自/史密森学会杂志 作者/Alison Gopnik 翻译/网易智能 参与/乐邦 编辑/定西)
【网易智能讯 3月3日消息】
相关阅读
精彩推荐
阅读排行
相关词
- 美国社交电商再起波澜:TikTok商城开张,Meta却要闭门做生|今日快看
- 世界快资讯:上海再保险“国际板”正式启动
- 特别好评RPG游戏《恐怖的世界》 完整版10月19日上线|环球精选
- 易会满:持续加大对伪私募、地方交易场所等重点领域风险的整治
- 十元店重回巅峰:新穷人与日本1990s
- 每日快报!教育股震荡走低 国新文化跌超8% 荣信文化跌逾7%
- 全球快讯:央行潘功胜:人民币债券具有良好的投资组合分散化价值
- 国产大飞机开启常态化商业运行:C919带动产业链一起飞 市场规模有望达万亿元量级
- U盘安装系统时蓝屏怎么解决 全球头条
- ROG蓝屏后该采取什么解决方法来重启 世界快报
- 中国地震局:国家地震烈度速报与预警工程已完成主体建设任务 焦点讯息
- win10启动就蓝屏是怎么回事 全球热点
- 环球头条:华硕笔记本acpi蓝屏该如何解决
- 世界最资讯丨打击违规销售作弊器材行为 海南省市场监管部门多措并举为高考中考保驾护航
- 每日热议!永劫无间蓝屏死机应该如何处理
- KMODE蓝屏出现应该如何处理 全球观热点
- 携程集团发布2023年第一季度财报
- 甘肃省华亭市东华镇市场监管所开展农村夏季食品安全专项检查_环球热资讯
- 深圳市市场监管局总部经济审批服务“全市通办”正式落地
- 解码开化(一) 文旅产业:从“高看一眼”“棋高一招”到“焕然一新”
- 第五届京津冀石墨烯大会在北京房山举办,加速三地产业链深度融合
- 高考期间海南天气如何?未来两天多云有雷阵雨 焦点速读
- 别被“蚊蝇通杀”迷了眼
- 啥是海洋?直播带你一起看 天天快看点
- 内罗毕:低碳和电动交通载具展 天天观速讯
- 环球播报:斯诺克新星赵心童为涉赌遭禁赛道歉
- 《沙石镇时光》:1.0版本发售日期公布!通过“塑造你的未来”预告片为前方的秘密和危险做好准备 世界独家
- 关注眼健康亟须全社会行动起来
- 哈利波特魔法觉醒怎么尊享眉色 尊享眉色方法攻略 环球速看
- 甘肃省华亭市市场监管局多举措保障中高考期间食品安全 环球新动态
- 第19届深圳文博会人气旺 每日快报
- 甘肃省嘉峪关市市场监管局镜铁分局全力保障高考期间食品和特种设备安全
- 河北沙河:太行古村落焕发新活力_天天快播
- 世界百事通!晋陕峡谷遇奇石
- “共建首都跨境电商新生态”系列活动在京启动 每日热门
- 环球看热讯:汉字工坊上班不带饭怎么过 找出9个公司吃的答案分享
- 甘肃省张掖市新墩市场监管所“三力齐发”加强中高考期间特种设备安全保障_环球热推荐
- 快消息!小心,这种眼疾易盯上上班族
- 眼药水怎样使用才正确
- 当前讯息:机器人:公司基本实现了35kg以下新款机器人减速器的国产化替代
- 华菱钢铁:钢材产品在新能源新材料领域需求前景将持续向好-天天通讯
- 今早发布!雷雨!_天天即时
- 全球快报:云顶之弈s9暗影岛格温阵容攻略 s9赛季暗影岛格温阵容搭配
- 江苏“智造”夯牢实体经济“家底”
- 加拿大野火烟尘飘至美国 部分地区被烟尘笼罩
- 【环球时快讯】文字玩出花无法原谅怎么过 无法原谅十二处细思极恐在哪
- 环球快播:百亿授信!民生银行与协鑫集团达成全面战略合作
- 前5月外贸保持稳定增长 制造业转型升级塑造出口新动能
- 简讯:江苏油田页岩油累产突破4万吨
- 让城市成为“开放的艺术馆”(金台随笔) 视点
- 易会满:适时出台资本市场进一步支持高水平自立自强的政策措施 全球报道
- 【全球聚看点】河南麦收进度过八成 夏播已完成近五成
- 今起,在锡启幕!
- 两大国际组织上调中国2023年经济增长预期
- 仲景食品:公司产品以国内销售为主 出口业务占比较小-每日速看
- 天天速递!U盘装系统进入PE蓝屏该采取什么解决方法
- 充满算计!日美澳在南太铺光缆,日媒炒“抗衡中国影响力” 焦点热门
- 重点聚焦!力箭一号火箭的专属发射工位长什么样?
- 袁明辉:拍摄下来记录下来用自然摄影留住那些美好
- 扫码支付已在国内迅速发展普及 刷掌支付是否还有市场前景
- “去风险”成脱钩新马甲
- 环球微资讯!360qpesv.sys导致蓝屏该采取什么解决方法
- 【新要闻】北海市海城区地角街道辖区率先完成第二季度食品安全“两个责任”包保工作
- 国家开发银行前5个月发放交通领域贷款2687亿元
- 当前视点!带火原料药企,马斯克加持的“减肥神药”又火了
- 什么是股份制企业?股份制企业和私营企业的区别有哪些?
- 怎么才能正确安装python39.dll
- 全球连线|对两国合作机遇充满期待——洪都拉斯各界热议中国驻洪使馆开馆
- 兰州新区召开第二季度落实食品安全“两个责任”推进会议
- 民泰银行绍兴分行创新产品助共富系列① | 动产融资业务,为民播下“共富”希望-世界实时
- 【世界快播报】我国外贸连续4个月保持正增长
- 偷渡罪一般判多少年?偷渡人员怎么正规回国?
- 吉利雷达以“真乘用化”撬动市场,5月销售1016台创历史新高 焦点资讯
- 故意伤害致人死亡如何处罚?故意伤害致死赔偿多少?
- “6·6”全国爱眼日公益讲座在京举办
- 上古诸神:卡牌对战官网在哪下载 最新官方下载安装地址 环球热推荐
- 天天头条:电脑中缺失alrsvc.dll文件应该怎么处理
- 赡养费标准是什么?不给赡养费最严重的后果有哪些?
- 只允许跟院方合作民营救护车辆进入?医院回应
- 涉案金额959万元!海口曝光9家定点医疗机构
- 世界快播:如何解决电脑端丢失rasmans.dll提示问题
- 微资讯!江西省新余市市场监管局:强化建材质量监管 守牢质量安全防线
- 【快播报】警惕“负首付”骗贷
- 财产税有哪些税种?所得税和财产税的区别有哪些?
- 高考第二天部分地区已公布查分时间 胜利在望,加油少年!|全球快看点
- 青海省海西州四项措施为“中高考”保驾护航_每日看点
- 嫖娼拘留多少天?初次涉黄拘留几天?
- 青海省市场监管局发布中高考期间食品安全消费提示 天天热门
- 浙江金华婺城区:天然富硒,“硒”望之旅
- mtfutils.dll缺失如何恢复
- 忘了车限号开了一天罚多少钱?郑州限行免罚有几次机会?
- 焦点快播:网红化妆大师官网在哪下载 最新官方下载安装地址
- 动态:量子密钥分发攻防研究获重要进展
- 什么是违法所得?违法所得和非法财物的区别有哪些?
- 仙迹之九州神剑官网在哪下载 最新官方下载安装地址|今热点
- 工程预付款是怎么规定的?工程预付款为什么要扣回?
- 种一颗牙便宜多少钱?海南打出种植牙降价“组合拳”
- 劳动合同法第38条是什么内容?公司不辞退故意调岗怎么赔偿?
- 无证驾驶怎么处罚?无证驾驶会被马上拘留吗?
- 当前时讯:生存冒险游戏《血清》新预告 拥有4人合作模式
- 天天观热点:岭南街道构建“一网二联三队伍”服务模式,为社区长者健康保驾护航
- 通信业全力保障高考|莘莘学子逐梦未来 通信业全力护航
- 焦点观察:华为品质宽带智能运维系统荣获CAICT光接入网L3.5等级认证
- 青海省启动“企业商业秘密保护能力提升服务月”活动-天天速看
- 黑龙江省北安市市场监管局着力打造“帮您办”服务品牌|动态焦点
- 非遗 | 高校留学生走进安徽文旅扶点-环球通讯
- 今日快看!FPS游戏《无畏契约》国服今日终测 删档充值返利
- 环球最新:黑河联通多措并举提升廉洁文化教育质效
- 每日视点!语文名师点评AI高考作文:百度搜索AI伙伴优于New Bing、ChatGPT
- 国家金融监督管理总局李云泽:正式启动上海再保险“国际板”-环球快看点
- 全球报道:重庆油菜喜获丰收 总产量实现连续16年增长
- 冒险游戏《血清》发布实机视频 支持简体中文 四人联机
- 全力保障高考通信畅通,重庆电信在行动!_环球速读
- 《无人深空》发布季节性更新“奇点”预告视频 现已正式上线-环球微速讯
- 世界殿堂级名团重返中国舞台 玛莎·葛兰姆现代舞团尽展风采 观速讯
- 上海移动获得DC-Tech数据中心智能建造最高等级认证 当前快讯
- 戴尔电脑开机后蓝屏重启应该怎么应对
- 电视剧《照亮你》在都市类型中铺展新的叙事面向 世界要闻
- 黑白琴键抒写长三角风情 全球新要闻
- 上海世纪出版、米哈游、东方明珠新媒体上榜
- 电脑提示vcomp140.dll文件丢失的解决方法|环球新要闻
- 世界今热点:切实保护金融消费者合法权益
- 全球快报:电脑蓝屏nv1ddmkm.sys怎么办
- “拆楼”式装修必须叫停
- 世界今日讯!李云泽:下好风险前瞻防控先手棋,以更加主动态度应对风险隐患
- 湖北馆展品超5000件:五大“重器”显实力 五类“非遗”溢楚风_今日看点
- 国家金融监督管理总局李云泽:监管体制改革是金融改革的重要一环 天天快资讯
- 公安部交管局公布近期三轮车肇事肇祸典型交通事故案例
- 网传重组人生长激素进浙江集采 长春高新连夜召开电话会回应
- 当前通讯!传记文学《灵魂的旋律:我的父亲刘炽》:再现作曲家刘炽艺术人生
- 全球微头条丨欢乐家的椰子“野心”:去年椰子汁饮料营收超8亿,今年加码投资
- 腾势D9车型5月销量11005辆,环比增长约9.6%
- 两部门:举办全国和美乡村篮球大赛(村BA)
- 最新资讯:Win10 watchdog.sys蓝屏该采取什么解决方法
- 世界视讯!《神仙道3》神阙风物志第五章详细通关攻略
- 全球净零技术制造竞争全面展开 时讯
- 海口江东新区盛泰仕家安居房项目预计10月底全面封顶
- 刀具等特殊商品退货难邮寄,如何解?
- 如何解决提示cnbbr332.dll丢失报错问题
- 【小康头条】高考第二天,这些话想对你说......_世界微速讯
- 全球新消息丨国家医保局:1-4月基本医疗保险基金总收入11403.13亿元,同比增长8.1%
- 携程集团发布2023Q1财报:净营收92亿元 同比增长124%
- 茶园里开“茶话会” 专家齐献“金点子” 当前视讯
- 《崩坏星穹铁道》访问筛查拍照位置大全
- 树立安全“红线”意识 筑牢安全生产防线_天天快资讯
- 每日热文:安徽省休宁县市场监管局开展中高考考点周边药械安全专项检查
- 医院只允许有合作的民营救护车辆进入?调查结果来了
- 海口江东新区快速通道项目启动首联钢梁吊装作业-环球速看料
- 世界要闻:加拿大野火持续蔓延 美东多地被浓烟笼罩
- 评论 | 传统中国画教育的时代价值挖掘|世界最新